Integral using Substitution (Complex Exponential Functions)
I =
∫
e
3
x
4
-
32
x
3
-
6
x
2
-
48
x
+
6
(
x
3
-
8
x
2
-
x
-
4
)
d
x
Put
u
=
3
x
4
-
32
x
3
-
6
x
2
-
48
x
+
6
, then
d
u
=
(
12
x
3
-
96
x
2
-
12
x
-
48
)
d
x
Or,
1
12
d
u
=
(
x
3
-
8
x
2
-
x
-
4
)
d
x
So,
I =
∫
e
u
(
1
12
)
d
u
Or,
I =
1
12
∫
e
u
d
u
Or,
I =
1
12
e
u
+
C
Or,
I =
1
12
e
3
x
4
-
32
x
3
-
6
x
2
-
48
x
+
6
+
C
Algebra
Analytic Geometry
Differential Calculus
Integral Calculus
Home
Copyright © Dayal D. Purohit, Ph.D.(Mathematics)