Integral using Substitution (Complex Exponential Functions)
I =
∫
e
6
x
5
+
45
x
4
+
20
x
3
+
135
x
2
+
300
x
-
30
(
x
4
+
6
x
3
+
2
x
2
+
9
x
+
10
)
d
x
Put
u
=
6
x
5
+
45
x
4
+
20
x
3
+
135
x
2
+
300
x
-
30
, then
d
u
=
(
30
x
4
+
180
x
3
+
60
x
2
+
270
x
+
300
)
d
x
Or,
1
30
d
u
=
(
x
4
+
6
x
3
+
2
x
2
+
9
x
+
10
)
d
x
So,
I =
∫
e
u
(
1
30
)
d
u
Or,
I =
1
30
∫
e
u
d
u
Or,
I =
1
30
e
u
+
C
Or,
I =
1
30
e
6
x
5
+
45
x
4
+
20
x
3
+
135
x
2
+
300
x
-
30
+
C
Algebra
Analytic Geometry
Differential Calculus
Integral Calculus
Home
Copyright © Dayal D. Purohit, Ph.D.(Mathematics)