Integral using Substitution (Complex Exponential Functions)
I =
∫
e
x
4
+
4
x
3
-
2
x
2
-
16
x
-
4
(
x
3
+
3
x
2
-
x
-
4
)
d
x
Put
u
=
x
4
+
4
x
3
-
2
x
2
-
16
x
-
4
, then
d
u
=
(
4
x
3
+
12
x
2
-
4
x
-
16
)
d
x
Or,
1
4
d
u
=
(
x
3
+
3
x
2
-
x
-
4
)
d
x
So,
I =
∫
e
u
(
1
4
)
d
u
Or,
I =
1
4
∫
e
u
d
u
Or,
I =
1
4
e
u
+
C
Or,
I =
1
4
e
x
4
+
4
x
3
-
2
x
2
-
16
x
-
4
+
C
Algebra
Analytic Geometry
Differential Calculus
Integral Calculus
Home
Copyright © Dayal D. Purohit, Ph.D.(Mathematics)